MirOS Manual: PEM_read_bio_DHparams(3), PEM_read_bio_DSAparams(3), PEM_read_bio_DSAPrivateKey(3), PEM_read_bio_DSA_PUBKEY(3), PEM_read_bio_NETSCAPE_CERT_SEQUENCE(3), PEM_read_bio_PKCS7(3), PEM_read_bio_PrivateKey(3), PEM_read_bio_PUBKEY(3), PEM_read_bio_RSAPrivateKey(3), PEM_read_bio_RSAPublicKey(3), PEM_read_bio_RSA_PUBKEY(3), PEM_read_bio_X509(3), PEM_read_bio_X509_AUX(3), PEM_read_bio_X509_CRL(3), PEM_read_bio_X509_REQ(3), PEM_read_DHparams(3), PEM_read_DSAparams(3), PEM_read_DSAPrivateKey(3), PEM_read_DSA_PUBKEY(3), PEM_read_NETSCAPE_CERT_SEQUENCE(3), PEM_read_PKCS7(3), PEM_read_PrivateKey(3), PEM_read_PUBKEY(3), PEM_read_RSAPrivateKey(3), PEM_read_RSAPublicKey(3), PEM_read_RSA_PUBKEY(3), PEM_read_X509(3), PEM_read_X509_AUX(3), PEM_read_X509_CRL(3), PEM_read_X509_REQ(3), PEM_write_bio_DHparams(3), PEM_write_bio_DSAparams(3), PEM_write_bio_DSAPrivateKey(3), PEM_write_bio_DSA_PUBKEY(3), PEM_write_bio_NETSCAPE_CERT_SEQUENCE(3), PEM_write_bio_PKCS7(3), PEM_write_bio_PKCS8PrivateKey(3), PEM_write_bio_PKCS8PrivateKey_nid(3), PEM_write_bio_PrivateKey(3), PEM_write_bio_PUBKEY(3), PEM_write_bio_RSAPrivateKey(3), PEM_write_bio_RSAPublicKey(3), PEM_write_bio_RSA_PUBKEY(3), PEM_write_bio_X509(3), PEM_write_bio_X509_AUX(3), PEM_write_bio_X509_CRL(3), PEM_write_bio_X509_REQ(3), PEM_write_bio_X509_REQ_NEW(3), PEM_write_DHparams(3), PEM_write_DSAparams(3), PEM_write_DSAPrivateKey(3), PEM_write_DSA_PUBKEY(3), PEM_write_NETSCAPE_CERT_SEQUENCE(3), PEM_write_PKCS7(3), PEM_write_PKCS8PrivateKey(3), PEM_write_PKCS8PrivateKey_nid(3), PEM_write_PrivateKey(3), PEM_write_PUBKEY(3), PEM_write_RSAPrivateKey(3), PEM_write_RSAPublicKey(3), PEM_write_RSA_PUBKEY(3), PEM_write_X509(3), PEM_write_X509_AUX(3), PEM_write_X509_CRL(3), PEM_write_X509_REQ(3), PEM_write_X509_REQ_NEW(3)


PEM_READ_BIO_PRIVATEKEY(3)   OpenSSL   PEM_READ_BIO_PRIVATEKEY(3)

NAME

     PEM - PEM routines

SYNOPSIS

      #include <openssl/pem.h>

      EVP_PKEY *PEM_read_bio_PrivateKey(BIO *bp, EVP_PKEY **x,
                                             pem_password_cb *cb, void *u);

      EVP_PKEY *PEM_read_PrivateKey(FILE *fp, EVP_PKEY **x,
                                             pem_password_cb *cb, void *u);

      int PEM_write_bio_PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc,
                                             unsigned char *kstr, int klen,
                                             pem_password_cb *cb, void *u);

      int PEM_write_PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
                                             unsigned char *kstr, int klen,
                                             pem_password_cb *cb, void *u);

      int PEM_write_bio_PKCS8PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc,
                                             char *kstr, int klen,
                                             pem_password_cb *cb, void *u);

      int PEM_write_PKCS8PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
                                             char *kstr, int klen,
                                             pem_password_cb *cb, void *u);

      int PEM_write_bio_PKCS8PrivateKey_nid(BIO *bp, EVP_PKEY *x, int nid,
                                             char *kstr, int klen,
                                             pem_password_cb *cb, void *u);

      int PEM_write_PKCS8PrivateKey_nid(FILE *fp, EVP_PKEY *x, int nid,
                                             char *kstr, int klen,
                                             pem_password_cb *cb, void *u);

      EVP_PKEY *PEM_read_bio_PUBKEY(BIO *bp, EVP_PKEY **x,
                                             pem_password_cb *cb, void *u);

      EVP_PKEY *PEM_read_PUBKEY(FILE *fp, EVP_PKEY **x,
                                             pem_password_cb *cb, void *u);

      int PEM_write_bio_PUBKEY(BIO *bp, EVP_PKEY *x);
      int PEM_write_PUBKEY(FILE *fp, EVP_PKEY *x);

      RSA *PEM_read_bio_RSAPrivateKey(BIO *bp, RSA **x,
                                             pem_password_cb *cb, void *u);

      RSA *PEM_read_RSAPrivateKey(FILE *fp, RSA **x,
                                             pem_password_cb *cb, void *u);

MirOS BSD #10-current      2016-10-06                           1

PEM_READ_BIO_PRIVATEKEY(3)   OpenSSL   PEM_READ_BIO_PRIVATEKEY(3)

      int PEM_write_bio_RSAPrivateKey(BIO *bp, RSA *x, const EVP_CIPHER *enc,
                                             unsigned char *kstr, int klen,
                                             pem_password_cb *cb, void *u);

      int PEM_write_RSAPrivateKey(FILE *fp, RSA *x, const EVP_CIPHER *enc,
                                             unsigned char *kstr, int klen,
                                             pem_password_cb *cb, void *u);

      RSA *PEM_read_bio_RSAPublicKey(BIO *bp, RSA **x,
                                             pem_password_cb *cb, void *u);

      RSA *PEM_read_RSAPublicKey(FILE *fp, RSA **x,
                                             pem_password_cb *cb, void *u);

      int PEM_write_bio_RSAPublicKey(BIO *bp, RSA *x);

      int PEM_write_RSAPublicKey(FILE *fp, RSA *x);

      RSA *PEM_read_bio_RSA_PUBKEY(BIO *bp, RSA **x,
                                             pem_password_cb *cb, void *u);

      RSA *PEM_read_RSA_PUBKEY(FILE *fp, RSA **x,
                                             pem_password_cb *cb, void *u);

      int PEM_write_bio_RSA_PUBKEY(BIO *bp, RSA *x);

      int PEM_write_RSA_PUBKEY(FILE *fp, RSA *x);

      DSA *PEM_read_bio_DSAPrivateKey(BIO *bp, DSA **x,
                                             pem_password_cb *cb, void *u);

      DSA *PEM_read_DSAPrivateKey(FILE *fp, DSA **x,
                                             pem_password_cb *cb, void *u);

      int PEM_write_bio_DSAPrivateKey(BIO *bp, DSA *x, const EVP_CIPHER *enc,
                                             unsigned char *kstr, int klen,
                                             pem_password_cb *cb, void *u);

      int PEM_write_DSAPrivateKey(FILE *fp, DSA *x, const EVP_CIPHER *enc,
                                             unsigned char *kstr, int klen,
                                             pem_password_cb *cb, void *u);

      DSA *PEM_read_bio_DSA_PUBKEY(BIO *bp, DSA **x,
                                             pem_password_cb *cb, void *u);

      DSA *PEM_read_DSA_PUBKEY(FILE *fp, DSA **x,
                                             pem_password_cb *cb, void *u);

      int PEM_write_bio_DSA_PUBKEY(BIO *bp, DSA *x);

      int PEM_write_DSA_PUBKEY(FILE *fp, DSA *x);

MirOS BSD #10-current      2016-10-06                           2

PEM_READ_BIO_PRIVATEKEY(3)   OpenSSL   PEM_READ_BIO_PRIVATEKEY(3)

      DSA *PEM_read_bio_DSAparams(BIO *bp, DSA **x, pem_password_cb *cb, void *u);

      DSA *PEM_read_DSAparams(FILE *fp, DSA **x, pem_password_cb *cb, void *u);

      int PEM_write_bio_DSAparams(BIO *bp, DSA *x);

      int PEM_write_DSAparams(FILE *fp, DSA *x);

      DH *PEM_read_bio_DHparams(BIO *bp, DH **x, pem_password_cb *cb, void *u);

      DH *PEM_read_DHparams(FILE *fp, DH **x, pem_password_cb *cb, void *u);

      int PEM_write_bio_DHparams(BIO *bp, DH *x);

      int PEM_write_DHparams(FILE *fp, DH *x);

      X509 *PEM_read_bio_X509(BIO *bp, X509 **x, pem_password_cb *cb, void *u);

      X509 *PEM_read_X509(FILE *fp, X509 **x, pem_password_cb *cb, void *u);

      int PEM_write_bio_X509(BIO *bp, X509 *x);

      int PEM_write_X509(FILE *fp, X509 *x);

      X509 *PEM_read_bio_X509_AUX(BIO *bp, X509 **x, pem_password_cb *cb, void *u);

      X509 *PEM_read_X509_AUX(FILE *fp, X509 **x, pem_password_cb *cb, void *u);

      int PEM_write_bio_X509_AUX(BIO *bp, X509 *x);

      int PEM_write_X509_AUX(FILE *fp, X509 *x);

      X509_REQ *PEM_read_bio_X509_REQ(BIO *bp, X509_REQ **x,
                                             pem_password_cb *cb, void *u);

      X509_REQ *PEM_read_X509_REQ(FILE *fp, X509_REQ **x,
                                             pem_password_cb *cb, void *u);

      int PEM_write_bio_X509_REQ(BIO *bp, X509_REQ *x);

      int PEM_write_X509_REQ(FILE *fp, X509_REQ *x);

      int PEM_write_bio_X509_REQ_NEW(BIO *bp, X509_REQ *x);

      int PEM_write_X509_REQ_NEW(FILE *fp, X509_REQ *x);

      X509_CRL *PEM_read_bio_X509_CRL(BIO *bp, X509_CRL **x,
                                             pem_password_cb *cb, void *u);
      X509_CRL *PEM_read_X509_CRL(FILE *fp, X509_CRL **x,
                                             pem_password_cb *cb, void *u);
      int PEM_write_bio_X509_CRL(BIO *bp, X509_CRL *x);
      int PEM_write_X509_CRL(FILE *fp, X509_CRL *x);

MirOS BSD #10-current      2016-10-06                           3

PEM_READ_BIO_PRIVATEKEY(3)   OpenSSL   PEM_READ_BIO_PRIVATEKEY(3)

      PKCS7 *PEM_read_bio_PKCS7(BIO *bp, PKCS7 **x, pem_password_cb *cb, void *u);

      PKCS7 *PEM_read_PKCS7(FILE *fp, PKCS7 **x, pem_password_cb *cb, void *u);

      int PEM_write_bio_PKCS7(BIO *bp, PKCS7 *x);

      int PEM_write_PKCS7(FILE *fp, PKCS7 *x);

      NETSCAPE_CERT_SEQUENCE *PEM_read_bio_NETSCAPE_CERT_SEQUENCE(BIO *bp,
                                                     NETSCAPE_CERT_SEQUENCE **x,
                                                     pem_password_cb *cb, void *u);

      NETSCAPE_CERT_SEQUENCE *PEM_read_NETSCAPE_CERT_SEQUENCE(FILE *fp,
                                                     NETSCAPE_CERT_SEQUENCE **x,
                                                     pem_password_cb *cb, void *u);

      int PEM_write_bio_NETSCAPE_CERT_SEQUENCE(BIO *bp, NETSCAPE_CERT_SEQUENCE *x);

      int PEM_write_NETSCAPE_CERT_SEQUENCE(FILE *fp, NETSCAPE_CERT_SEQUENCE *x);

DESCRIPTION

     The PEM functions read or write structures in PEM format. In
     this sense PEM format is simply base64 encoded data sur-
     rounded by header lines.

     For more details about the meaning of arguments see the PEM
     FUNCTION ARGUMENTS section.

     Each operation has four functions associated with it. For
     clarity the term "foobar functions" will be used to collec-
     tively refer to the PEM_read_bio_foobar(),
     PEM_read_foobar(), PEM_write_bio_foobar() and
     PEM_write_foobar() functions.

     The PrivateKey functions read or write a private key in PEM
     format using an EVP_PKEY structure. The write routines use
     "traditional" private key format and can handle both RSA and
     DSA private keys. The read functions can additionally tran-
     sparently handle PKCS#8 format encrypted and unencrypted
     keys too.

     PEM_write_bio_PKCS8PrivateKey() and
     PEM_write_PKCS8PrivateKey() write a private key in an
     EVP_PKEY structure in PKCS#8 EncryptedPrivateKeyInfo format
     using PKCS#5 v2.0 password based encryption algorithms. The
     cipher argument specifies the encryption algoritm to use:
     unlike all other PEM routines the encryption is applied at
     the PKCS#8 level and not in the PEM headers. If cipher is
     NULL then no encryption is used and a PKCS#8 PrivateKeyInfo
     structure is used instead.

MirOS BSD #10-current      2016-10-06                           4

PEM_READ_BIO_PRIVATEKEY(3)   OpenSSL   PEM_READ_BIO_PRIVATEKEY(3)

     PEM_write_bio_PKCS8PrivateKey_nid() and
     PEM_write_PKCS8PrivateKey_nid() also write out a private key
     as a PKCS#8 EncryptedPrivateKeyInfo however it uses PKCS#5
     v1.5 or PKCS#12 encryption algorithms instead. The algorithm
     to use is specified in the nid parameter and should be the
     NID of the corresponding OBJECT IDENTIFIER (see NOTES sec-
     tion).

     The PUBKEY functions process a public key using an EVP_PKEY
     structure. The public key is encoded as a SubjectPublicKey-
     Info structure.

     The RSAPrivateKey functions process an RSA private key using
     an RSA structure. It handles the same formats as the
     PrivateKey functions but an error occurs if the private key
     is not RSA.

     The RSAPublicKey functions process an RSA public key using
     an RSA structure. The public key is encoded using a PKCS#1
     RSAPublicKey structure.

     The RSA_PUBKEY functions also process an RSA public key
     using an RSA structure. However the public key is encoded
     using a SubjectPublicKeyInfo structure and an error occurs
     if the public key is not RSA.

     The DSAPrivateKey functions process a DSA private key using
     a DSA structure. It handles the same formats as the Private-
     Key functions but an error occurs if the private key is not
     DSA.

     The DSA_PUBKEY functions process a DSA public key using a
     DSA structure. The public key is encoded using a SubjectPub-
     licKeyInfo structure and an error occurs if the public key
     is not DSA.

     The DSAparams functions process DSA parameters using a DSA
     structure. The parameters are encoded using a foobar struc-
     ture.

     The DHparams functions process DH parameters using a DH
     structure. The parameters are encoded using a PKCS#3
     DHparameter structure.

     The X509 functions process an X509 certificate using an X509
     structure. They will also process a trusted X509 certificate
     but any trust settings are discarded.

     The X509_AUX functions process a trusted X509 certificate
     using an X509 structure.

MirOS BSD #10-current      2016-10-06                           5

PEM_READ_BIO_PRIVATEKEY(3)   OpenSSL   PEM_READ_BIO_PRIVATEKEY(3)

     The X509_REQ and X509_REQ_NEW functions process a PKCS#10
     certificate request using an X509_REQ structure. The
     X509_REQ write functions use CERTIFICATE REQUEST in the
     header whereas the X509_REQ_NEW functions use NEW CERTIFI-
     CATE REQUEST (as required by some CAs). The X509_REQ read
     functions will handle either form so there are no
     X509_REQ_NEW read functions.

     The X509_CRL functions process an X509 CRL using an X509_CRL
     structure.

     The PKCS7 functions process a PKCS#7 ContentInfo using a
     PKCS7 structure.

     The NETSCAPE_CERT_SEQUENCE functions process a Netscape Cer-
     tificate Sequence using a NETSCAPE_CERT_SEQUENCE structure.

PEM FUNCTION ARGUMENTS

     The PEM functions have many common arguments.

     The bp BIO parameter (if present) specifies the BIO to read
     from or write to.

     The fp FILE parameter (if present) specifies the FILE
     pointer to read from or write to.

     The PEM read functions all take an argument TYPE **x and
     return a TYPE * pointer. Where TYPE is whatever structure
     the function uses. If x is NULL then the parameter is
     ignored. If x is not NULL but *x is NULL then the structure
     returned will be written to *x. If neither x nor *x is NULL
     then an attempt is made to reuse the structure at *x (but
     see BUGS and EXAMPLES sections). Irrespective of the value
     of x a pointer to the structure is always returned (or NULL
     if an error occurred).

     The PEM functions which write private keys take an enc
     parameter which specifies the encryption algorithm to use,
     encryption is done at the PEM level. If this parameter is
     set to NULL then the private key is written in unencrypted
     form.

     The cb argument is the callback to use when querying for the
     pass phrase used for encrypted PEM structures (normally only
     private keys).

     For the PEM write routines if the kstr parameter is not NULL
     then klen bytes at kstr are used as the passphrase and cb is
     ignored.

     If the cb parameters is set to NULL and the u parameter is
     not NULL then the u parameter is interpreted as a null

MirOS BSD #10-current      2016-10-06                           6

PEM_READ_BIO_PRIVATEKEY(3)   OpenSSL   PEM_READ_BIO_PRIVATEKEY(3)

     terminated string to use as the passphrase. If both cb and u
     are NULL then the default callback routine is used which
     will typically prompt for the passphrase on the current ter-
     minal with echoing turned off.

     The default passphrase callback is sometimes inappropriate
     (for example in a GUI application) so an alternative can be
     supplied. The callback routine has the following form:

      int cb(char *buf, int size, int rwflag, void *u);

     buf is the buffer to write the passphrase to. size is the
     maximum length of the passphrase (i.e. the size of buf).
     rwflag is a flag which is set to 0 when reading and 1 when
     writing. A typical routine will ask the user to verify the
     passphrase (for example by prompting for it twice) if rwflag
     is 1. The u parameter has the same value as the u parameter
     passed to the PEM routine. It allows arbitrary data to be
     passed to the callback by the application (for example a
     window handle in a GUI application). The callback must
     return the number of characters in the passphrase or 0 if an
     error occurred.

EXAMPLES

     Although the PEM routines take several arguments in almost
     all applications most of them are set to 0 or NULL.

     Read a certificate in PEM format from a BIO:

      X509 *x;
      x = PEM_read_bio_X509(bp, NULL, 0, NULL);
      if (x == NULL)
             {
             /* Error */
             }

     Alternative method:

      X509 *x = NULL;
      if (!PEM_read_bio_X509(bp, &x, 0, NULL))
             {
             /* Error */
             }

     Write a certificate to a BIO:

      if (!PEM_write_bio_X509(bp, x))
             {
             /* Error */
             }

MirOS BSD #10-current      2016-10-06                           7

PEM_READ_BIO_PRIVATEKEY(3)   OpenSSL   PEM_READ_BIO_PRIVATEKEY(3)

     Write an unencrypted private key to a FILE pointer:

      if (!PEM_write_PrivateKey(fp, key, NULL, NULL, 0, 0, NULL))
             {
             /* Error */
             }

     Write a private key (using traditional format) to a BIO
     using triple DES encryption, the pass phrase is prompted
     for:

      if (!PEM_write_bio_PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, NULL))
             {
             /* Error */
             }

     Write a private key (using PKCS#8 format) to a BIO using
     triple DES encryption, using the pass phrase "hello":

      if (!PEM_write_bio_PKCS8PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, "hello"))
             {
             /* Error */
             }

     Read a private key from a BIO using the pass phrase "hello":

      key = PEM_read_bio_PrivateKey(bp, NULL, 0, "hello");
      if (key == NULL)
             {
             /* Error */
             }

     Read a private key from a BIO using a pass phrase callback:

      key = PEM_read_bio_PrivateKey(bp, NULL, pass_cb, "My Private Key");
      if (key == NULL)
             {
             /* Error */
             }

     Skeleton pass phrase callback:

      int pass_cb(char *buf, int size, int rwflag, void *u);
             {
             int len;
             char *tmp;
             /* We'd probably do something else if 'rwflag' is 1 */
             printf("Enter pass phrase for \"%s\"\n", u);

             /* get pass phrase, length 'len' into 'tmp' */
             tmp = "hello";
             len = strlen(tmp);

MirOS BSD #10-current      2016-10-06                           8

PEM_READ_BIO_PRIVATEKEY(3)   OpenSSL   PEM_READ_BIO_PRIVATEKEY(3)

             if (len <= 0) return 0;
             /* if too long, truncate */
             if (len > size) len = size;
             memcpy(buf, tmp, len);
             return len;
             }

NOTES

     The old PrivateKey write routines are retained for compati-
     bility. New applications should write private keys using the
     PEM_write_bio_PKCS8PrivateKey() or
     PEM_write_PKCS8PrivateKey() routines because they are more
     secure (they use an iteration count of 2048 whereas the
     traditional routines use a count of 1) unless compatibility
     with older versions of OpenSSL is important.

     The PrivateKey read routines can be used in all applications
     because they handle all formats transparently.

     A frequent cause of problems is attempting to use the PEM
     routines like this:

      X509 *x;
      PEM_read_bio_X509(bp, &x, 0, NULL);

     this is a bug because an attempt will be made to reuse the
     data at x which is an uninitialised pointer.

PEM ENCRYPTION FORMAT

     This old PrivateKey routines use a non standard technique
     for encryption.

     The private key (or other data) takes the following form:

      -----BEGIN RSA PRIVATE KEY-----
      Proc-Type: 4,ENCRYPTED
      DEK-Info: DES-EDE3-CBC,3F17F5316E2BAC89

      ...base64 encoded data...
      -----END RSA PRIVATE KEY-----

     The line beginning DEK-Info contains two comma separated
     pieces of information: the encryption algorithm name as used
     by EVP_get_cipherbyname() and an 8 byte salt encoded as a
     set of hexadecimal digits.

     After this is the base64 encoded encrypted data.

     The encryption key is determined using EVP_BytesToKey(),
     using salt and an iteration count of 1. The IV used is the
     value of salt and *not* the IV returned by EVP_BytesToKey().

MirOS BSD #10-current      2016-10-06                           9

PEM_READ_BIO_PRIVATEKEY(3)   OpenSSL   PEM_READ_BIO_PRIVATEKEY(3)

BUGS

     The PEM read routines in some versions of OpenSSL will not
     correctly reuse an existing structure. Therefore the follow-
     ing:

      PEM_read_bio_X509(bp, &x, 0, NULL);

     where x already contains a valid certificate, may not work,
     whereas:

      X509_free(x);
      x = PEM_read_bio_X509(bp, NULL, 0, NULL);

     is guaranteed to work.

RETURN CODES

     The read routines return either a pointer to the structure
     read or NULL if an error occurred.

     The write routines return 1 for success or 0 for failure.

SEE ALSO

     EVP_get_cipherbyname(3), EVP_BytesToKey(3)

MirOS BSD #10-current      2016-10-06                          10

Generated on 2017-04-03 16:26:17 by $MirOS: src/scripts/roff2htm,v 1.88 2017/01/29 00:51:06 tg Exp $

These manual pages and other documentation are copyrighted by their respective writers; their source is available at our CVSweb, AnonCVS, and other mirrors. The rest is Copyright © 2002–2017 The MirOS Project, Germany.
This product includes material provided by mirabilos.

This manual page’s HTML representation is supposed to be valid XHTML/1.1; if not, please send a bug report — diffs preferred.